Skip to main content
padlock icon - secure page this page is secure

Nanoparticles of Polystyrene Latexes by Semicontinuous Microemulsion Polymerization Using Mixed Surfactants

Buy Article:

$105.00 + tax (Refund Policy)

Nanosized polystyrene (PS) latexes stabilized by the mixture of cationic/cationic, anionic/anionic, or anionic/cationic surfactants of various types with high weight ratios of PS to surfactant (ca. 10:1) have been successfully synthesized by a semicontinuous microemulsion polymerization process. For cationic or anionic systems, spherical latex particles with a weight-averaged diameter (Dw) ranging from about 22 to 53 nm were nearly linearly dependent on the weight ratio of the mixed surfactants with similar charges. Their particle size distributions were rather uniform (Dw/Dn < 1 · 20). For a system with oppositely charged surfactants at nonequimolar ratios, it could produce stable PS particles up to 94 nm in diameter. High molar masses (Mw) of PS ranging from 1.1 to 1 · 9 × 106 g/mol could easily be obtained for all three systems investigated. For both cationic/cationic and anionic/anionic surfactant systems, the number of PS particles per milliliter of latex (Np) generated in the very early stage of O/W microemulsion remained rather constant throughout the polymerization. This was controlled by using only 1 wt% of mixed surfactants and the continuous addition of a small amount of styrene. The present polymerization method allows one to synthesize nanoparticles of PS or other polymers of high polymer/surfactant weight ratios at some particle sizes that are unable to achieve them with a single type of surfactant.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 June 2003

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more