Skip to main content
padlock icon - secure page this page is secure

Experimental and Numerical Study of Stenotic Flows

Buy Article:

$105.00 + tax (Refund Policy)

Atherosclerosis has been leading cause of deaths in several countries. Recent technical advances has allowed the investigation of stenotic flows and in understanding the implications with increased severity. Such studies shall provide detailed understanding of flow across stenosis and its progression. In the present study, a large artery representing segment of aorta is considered as test specimen. Experimental study is carried out by generating the pulsatile flow through pulsatile duplicator. Flow across normal and various severities of stenosis such as 25%, 50% and 75% are studied. Numerical simulation using CFD is also carried out in similar normal and stenosed models. A novel concept of using pulse duplicator to generate pulsatile waves and investigate the different stenosed models has been adopted. Results obtained experimentally and numerically are compared and agree well with that of clinical observations. This study demonstrates significant variation of haemodynamics in post-stenotic region with increased stenosis. Increased pulse pressure, phase lag is observed with increased severity. It is also observed that stenosis greater than 75% is significant as flow complexity is induced with considerable disturbance even in early and latter part of pulse cycle. Such study shall be useful in understanding the flow changes in stenosis and enhance clinical observation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 October 2016

More about this publication?
  • Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more