Skip to main content
padlock icon - secure page this page is secure

Toward Mechanosynthesis of Diamondoid Structures: X. Commercial Capped CNT SPM Tip as Nowadays Available C2 Dimer Placement Tool for Tip-Based Nanofabrication

Buy Article:

$105.00 + tax (Refund Policy)

According to Drexler, advanced mechanosynthesis will employ advanced nano-machines, but advanced nano-machines will themselves be products of advanced mechanosynthesis. This circular relationship must be broken via TBN technology development. In this article, the possibility of using easily available commercial CNT tips to assemble carbon-based intermediate generations of nano-devices is considered. Mechanosynthesis of a target class of carbon-based nano-devices will require molecular tools capable of transferring C2 molecules to reaction sites that have binding energies in the range of –6.9 to –7.4 eV per carbon atom or –7.6 to – 8.6 eV per C2 molecule. Desirable properties of tools include approximately exoergic transfer of moieties to these structures; good geometrical exposure of moieties; and structural, electronic and positional stability. The results presented in this paper suggest that the CNT tips now available on the market have adequate properties to become tools for C2 molecule transfer into a reaction site during positional mechanosynthesis. The surpassing features of the commercial single/double wall capped CNT tips such as, small tip radii, extreme aspect ratio, excellent wear-out behavior and the average low temperature binding energy of C2 ∼ –5.0±1.2 eV make them the ideal tools for bridging the gap between present-day tip-based nanofabrication (TBN) and future implementation of advanced nanotechnology.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: C2 PLACEMENT TOOL; EXPLORATORY ENGINEERING; INTERMEDIATE GENERATION OF NANO-SYSTEMS; POSITIONAL MECHANOSYNTHESIS; SINGLE/DOUBLE WALL CNT TIP; TIP-BASED NANOFABRICATION; UHV-SPM

Document Type: Research Article

Publication date: 01 September 2013

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more