Skip to main content
padlock icon - secure page this page is secure

Boundary Condition and Strain Effects on the Quality Factors of Single Walled Carbon Nanotubes

Buy Article:

$107.14 + tax (Refund Policy)

We utilize classical molecular dynamics to study energy dissipation (the Q-factors) of carbon nanotube-based nanoresonators undergoing flexural oscillations. Specifically, we have studied the difference in Q-factors of nanotubes with fixed/fixed and fixed/free boundary conditions. In doing so, we have found that fixed/fixed nanotubes have significantly higher Q-factors, particularly at low temperatures. Furthermore, we have found that mechanical strain can be utilized to enhance the Q-factors of fixed/fixed nanotubes by factors of 2–4 across a range of temperatures for tensile strains ranging from 0 to 6%. The results collectively indicate that fixed/fixed carbon nanotubes should be preferable for NEMS applications at low temperature due to a combination of inherently higher Q-factors, and the fact that the Q-factors can be further improved through the application of tensile strain.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BOUNDARY CONDITIONS; NANOTUBES; QUALITY FACTOR; STRAIN

Document Type: Research Article

Publication date: May 1, 2011

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more