Skip to main content
padlock icon - secure page this page is secure

Computations of Lossy Bloch Waves in Two-Dimensional Photonic Crystals

Buy Article:

$106.34 + tax (Refund Policy)

In this article we compute lossy Bloch waves in two-dimensional photonic crystals with dispersion and material loss. For given frequencies these waves are determined from non-linear eigenvalue problems in the wave vector. We applied two numerical methods to a demanding test case, a photonic crystal with embedded quantum dots that exhibits very strong and anamolous dispersion. The first method is based on the formulation with periodic boundary conditions leading to a quadratic eigenvalue problem. We discretize this problem by the finite element method (FEM), first of quadratic order and, second, of higher orders using curved cells (p-FEM). Second, we use the multiple-multipole method (MMP) with artificial sources and compute extrema in the field response determining the eigenvalues. Both MMP and FEM provide robust solutions for the investigated dispersive and lossy photonic crystal, and can approximate the Bloch waves to a high accuracy. Moreover, the MMP method and p-FEM show low computational effort for very accurate solutions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FINITE ELEMENT METHOD; LOSSY BLOCH WAVES; MULTIPLE-MULTIPOLE METHOD; P-FEM

Document Type: Research Article

Publication date: March 1, 2009

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more