Skip to main content
padlock icon - secure page this page is secure

Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics

Buy Article:

$106.34 + tax (Refund Policy)

Although the thermal conductivity of silicon has been studied before, current estimations for the phonon mean free paths have not provided full explanation of the strong size effects experimentally observed for various silicon micro and nanostructures. Since phonon relaxation time models are mostly semi-empirical, the mean free paths cannot be determined reliably and questions remain as to which polarizations, frequencies and wavelengths are dominant heat carriers. Here we have used a combination of equilibrium molecular dynamics simulations and lattice dynamics calculations to fully detail the spectral dependence of phonon transport properties in bulk silicon. By considering the frequency dependence of the specific heat, group velocities and mean free paths, we address these unresolved questions and examine the errors associated with isotropic and frequency averaged approximations. Simulation details, such as the convergence of results on the simulation time and extraction of phonon transport properties in different crystallographic directions, are also discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: MEAN FREE PATH; MOLECULAR DYNAMICS; PHONONS; RELAXATION TIME; SILICON; THERMAL CONDUCTIVITY

Document Type: Research Article

Publication date: February 1, 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more