Skip to main content
padlock icon - secure page this page is secure

Performance Evaluation of n-Type Carbon Nanotube Field Effect Transistors Using Ca as Contact Electrodes

Buy Article:

$107.19 + tax (Refund Policy)

In present technology, carbon nanotube-based field effect transistors (CNTFET) are fabricated with Schottky barriers at the metal/nanotube contact. So far, only p-type CNTFET has been the primary focus of research. However, a digital circuit demands both n-type and p-type devices. In this research work, a model has been proposed in view of the recent experimental demonstration using Calcium (Ca) as a contact metal to realize the n-type CNTFET. In order to fully optimize the proposed device model, the effects of different parameters such as work function, oxide thickness, oxide capacitance and source velocity limits were studied. Among all the parameters, the work function of the contact metal plays an important role for controlling the flow of carriers through the carbon nanotube channel and to reduce the threshold voltage. A semi-classical simulation of the proposed n-type CNTFET has been performed. The results show an excellent sub threshold swing value of 62.91 mV/decade, close to the ITRS specifications. A very good I on/I off ratio is achieved that suggests the leakage current for the proposed device is quite low, making it possible to use this kind of device in VLSI circuits easily. The on-current value of the proposed model is 90% of the ballistic limits, which makes this device a potential candidate to replace current CMOS technology.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: September 1, 2007

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more