Skip to main content
padlock icon - secure page this page is secure

Mechanism of Nanotization-Mediated Improvement in the Efficacy of Caffeine Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinsonism

Buy Article:

$106.92 + tax (Refund Policy)

The study aimed to measure the neuroprotective efficacy of caffeine-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles over bulk and to delineate the mechanism of improvement in efficacy both in vitro and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinsonism. Caffeine-encapsulated PLGA nanoparticles exhibited more pronounced increase in the endurance of dopaminergic neurons, fibre outgrowth and expression of tyrosine hydroxylase (TH) and growth-associated protein-43 (GAP-43) against 1-methyl-4-phenylpyridinium (MPP+)-induced alterations in vitro. Caffeine-encapsulated PLGA nanoparticles also inhibited MPP+-mediated nuclear translocation of nuclear factor-kappa B (NF-κB) and augmented protein kinase B phosphorylation more potentially than bulk counterpart. Conversely, MPTP reduced the striatal dopamine and its metabolites and nigral TH immunoreactivity whereas augmented the nigral microglial activation and nigrostriatal lipid peroxidation and nitrite content, which were shifted towards normalcy by caffeine. The modulations were more evident in caffeine-encapsulated PLGA nanoparticles treated animals as compared with bulk. Moreover, the striatal caffeine and its metabolites were found to be significantly higher in caffeine-encapsulated PLGA nanoparticles-treated mice as compared with bulk. The results thus suggest that nanotization improves the protective efficacy of caffeine against MPTP-induced Parkinsonism owing to enhanced bioavailability, inhibition of the nuclear translocation of NF-κB and activation of protein kinase B phosphorylation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE; CAFFEINE; CAFFEINE-ENCAPSULATED PLGA NANOPARTICLES; PARKINSON'S DISEASE

Document Type: Research Article

Publication date: December 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more