Skip to main content
padlock icon - secure page this page is secure

Indocyanine Green Derivative Covalently Conjugated with Gold Nanorods for Multimodal Phototherapy of Fibrosarcoma Cells

Buy Article:

$106.64 + tax (Refund Policy)

A hydrophilic indocyanine green derivative (ICG-Der-02) was covalently doped into mesoporous silica-coated gold nanorods (AuNRs/mSiO2). The self-synthesized derivative offers one carboxyl functional group on a side chain, which enables ICG-Der-02 to be covalently linked to nanomaterials and reduces the probability of leakage/desorption of the dye. The detection of infrared luminescence around 1270 nm confirmed that 1O2 is efficiently generated by the nanocomposite (AuNRs/mSiO2-ICG-Der-02). Furthermore, a second layer of silica was coated onto the nanocomposite, which then was conjugated with the αv integrin-targeting cyclic peptide (RGD-4C). The cell tests showed that the resulting nanoconjugate (AuNRs/mSiO2-ICG-Der-02/RGD-4C) was able to bind preferentially to HT-1080 human fibrosarcoma cells. Due to the synergistic effect of the produced nanoconjugates, a dual-modality photothermal and photochemical therapy was successfully achieved by 808 nm irradiation. Compared to using photothermal or photochemical therapy alone, the dualmodality photothermal/photochemical therapeutic strategy proved to be more damaging to HT-1080 cells and enhanced the effectiveness of photodestruction. Our work presents a novel approach to the multimodal treatment of fibrosarcoma and shows promise for future use in cancer theranostics.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FIBROSARCOMA; GOLD NANORODS; ICG; PHOTOCHEMICAL THERAPY; PHOTOTHERMAL THERAPY; RGD-4C

Document Type: Research Article

Publication date: April 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more