Skip to main content
padlock icon - secure page this page is secure

Substrate-Mediated Delivery of MicroRNA-145 Through a Polysorbitol-Based Osmotically Active Transporter Suppresses Smooth Muscle Cell Proliferation: Implications for Restenosis Treatment

Buy Article:

$107.19 + tax (Refund Policy)

Smooth muscle cells (SMCs) can grow over a stent surface and block blood flow through the stent, resulting in restenosis. MicroRNAs (miRNAs) are post-transcriptional regulators that contribute to cell proliferation, survival, and metabolism. Several miRNAs, including miR-145, have been identified that regulate vascular SMC proliferation and are down-regulated under conditions of proliferation. We hypothesized that SMC proliferation would be reduced or diminished if miR-145 expression was restored in SMCs. We designed a method to coat the stent surface with miR-145 to suppress the over-growth of SMCs. For effective miRNA delivery, various types of nanocarriers were tested for enhanced transfection efficiency and biocompatibility in the case of surface-mediated delivery. Physico-chemical characterization of the prepared nanoparticles was performed, and the cell viabilities and transfection efficiencies of the carriers were studied and compared to select the most efficient carrier for substrate-mediated delivery. The polysorbitol-based osmotically active transporter (PSOAT) retained its transgene delivery capacity and had higher biocompatibility than the other tested carriers. We detected reporter and therapeutic gene expression at the stent surface following PSOAT-mediated delivery. SMC proliferation after the treatment with PSOAT/miR-145 nanoparticles (PMN) was monitored using the MTS assay, and miR-145 target gene expression after PMN treatment was measured by reverse transcription–polymerase chain reaction. PSOAT-mediated delivery of miR-145 was associated with efficient intracellular expression of the therapeutic gene. A drastic reduction in SMC proliferation was observed after PMN treatment, and miR-145 target proteins were down-regulated upon miR-145 replacement.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: April 1, 2014

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more