Skip to main content
padlock icon - secure page this page is secure

Nanostructural Response of Mitomycin C Application on Human Scleral Tissues

Buy Article:

$106.22 + tax (Refund Policy)

This study quantitatively examined short-term effects of 0.02% Mitomycin C (MMC) treatment on the nanostructural changes in human scleral collagen fibrils. Histologic analysis and non-contact mode atomic force microscopy (AFM) were employed to assess the ultrastructural changes in the morphological characteristics of human sclera before and after 0.02% MMC application for 1 and 3 min. The scleral collagen fibrils treated with 0.02% MMC for 1 min showed no significant change in the morphology of collagen fibrils, and a significant change (p < 0.05) in the thickness of scleral tissues and collagen density, compared to the controls. 0.02% MMC application for 3 min led to a significant increase (p < 0.001) in the mean fibril diameter (185.43 ± 22.64 nm vs. 140.72 ± 18.06 nm), thickness (0.81 ± 0.03 mm vs. 0.54 ± 0.05 mm) and collagen density (1.16 times), compared to the controls This study examined the nanostructural changes in the scleral collagen fibrils before and after MMC application by AFM technique combined with conventional histological analysis (Hematoxylin-eosin and Masson's trichrome). This result indirectly suggests that long-term MMC application might increase the incidence of complications like a scleromalcia.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 0.02% MMC APPLICATION; AFM; FIBRIL DIAMETER AND D-PERIODICITY; HUMAN SCLERAL COLLAGEN FIBRILS; NANOSTRUCTURE

Document Type: Research Article

Publication date: August 1, 2013

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more