Skip to main content

Curcumin Loaded pH-Sensitive Nanoparticles for the Treatment of Colon Cancer

Buy Article:

$107.14 + tax (Refund Policy)

The investigation was aimed at designing pH-sensitive, polymeric nanoparticles of curcumin, a natural anti-cancer agent, for the treatment of colon cancer. The objective was to enhance the bioavailability of curcumin, simultaneously reducing the required dose through selective targeting to colon. Eudragit® S100 was chosen to aid targeting since the polymer dissolves at colonic pH to result in selective colonic release of the entrapped drug. Solvent emulsion-evaporation technique was employed to formulate the nanoparticles. Various process parameters were optimized and the optimized formulation was evaluated for particle size distribution and encapsulation efficiency before subjecting to freeze-drying. The freeze dried product was characterized for particle size, drug content, DSC studies, particle morphology. Anti-cancer potential of the formulation was demonstrated by MTT assay in HT-29 cell line. Nanometric, homogeneous, spherical particles were obtained with encapsulation efficiency of 72%. Freeze-dried nanoparticles exhibited a negative surface charge, drug content of >99% and presence of drug in amorphous form which may result in possible enhanced absorption. MTT assay demonstrated almost double inhibition of the cancerous cells by nanoparticles, as compared to curcumin alone, at the concentrations tested. Enhanced action may be attributed to size influenced improved cellular uptake, and may result in reduction of overall dose requirement. Results indicate the potential for in vivo studies to establish the clinical application of the formulation.


Document Type: Research Article

Publication date: October 1, 2009

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content