Skip to main content

Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres

Buy Article:

$110.00 + tax (Refund Policy)

Sugar palm (Arenga pinnata) starch and fibre are considered as a waste product of the agroindustry. The purpose of the current study is to determine the thermal, water barrier, and soil degradation properties of biodegradable plasticised sugar palm starch (PSPS) that contains sugar palm nanofibrillated celluloses (SP-NFCs) derived from sugar palm fibre. The bio-nanocomposites were fabricated by using the solution-casting method with the nanocellulose contents in the range of 0.1 wt.%–1.0 wt.%. The thermal stability, water resistance and degradation behaviour improved with increase in SP-NFCs content, due to high compatibility and strong inter-molecular hydrogen bonds formed between PSPS and SP-NFCs. PSPS/SP-NFCs bio-nanocomposites with 1.0 wt.% SP-NFCs content displayed the highest mechanical and thermal stability. Residue that was left during the TGA analysis increased as the SP-NFCs content was increased. Soil burial tests showed biodegradability resistance of the bio-nanocomposites. The following conclusions can be drawn from the present reinforcement study of SP-NFCs enhanced biodegradability, water barrier as well as thermal properties of starch polymer which extended the prospective application of environmentally-friendly polymer material. Potential applications for this eco-material are short product life cycles (plastic packaging and food container).

Keywords: BIO-NANOCOMPOSITES; NANOFIBRILLATED CELLULOSES; SOIL DEGRADATION; SUGAR PALM STARCH; THERMAL PROPERTIES; WATER-BARRIER PROPERTIES

Document Type: Research Article

Publication date: April 1, 2020

More about this publication?
  • The goal of the creation of a biobased economy is challenging to agriculture, forestry, academia, government and industry. The extractable resources of the Earth are finite, regardless of the quibble over when they will be depleted. The economic, political and social demands for biobased chemicals, materials and energy are expected to radically transform the materials industries, particularly the plastics industry as well as the biofuel industry. These changes will be based on the principles of sustainability, eco-efficiency, industrial ecology, and green chemistry and engineering. In keeping with the growth of knowledge in this field, there is a strong need for a forum to share original research related to biobased materials and bioenergy. The Journal of Biobased Materials and Bioenergy (JBMB) has been created as an international peer-reviewed periodical to fulfill the need for communication in these research areas. This journal will encompass related research activities in all fields of science, engineering and the life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content