Skip to main content
padlock icon - secure page this page is secure

Mechanical and Optical Properties for Li2O–ZnO–P2O5:xYb2O3 Glasses

Buy Article:

$107.05 + tax (Refund Policy)

The Yb3+-doped Lithium-Zinc-Phosphate glasses were prepared by means of conventional melt quenching method. The elastic moduli of the entire vitreous range of this doped glass system have been measured by the ultrasonic pulse-echo technique at 4 MHz. The ultrasonic wave velocities, the bulk, shear, longitudinal and Young's moduli are found to be rather sensitive to the Yb2O3 wt% content. The infrared absorption spectra were recorded in the frequencies range 4000 to 400 cm–1. Absorption bands and mode attributions have been fully discussed. Absorption midband positions and intensities are found to be strongly dependent on Yb2O3 wt%. The optical absorption spectra in the visible and ultraviolet region were recorded at room temperature. The obtained results showed that a gradual shift in the fundamental absorption edge toward longer wavelengths occurred and it is observed that the values ofE opt. are decreased and ΔE increased with the increase of Yb2O3 wt% content.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: March 1, 2017

More about this publication?
  • Journal of Advanced Physics is an interdisciplinary peer-reviewed journal consolidating research activities in all experimental and theoretical aspects of advanced physics. The journal aims in publishing articles of novel and frontier physics that merit the attention and interest of the whole physics community. JAP publishes review articles, full research articles, short communications of important new scientific and technological findings in all latest research aspects of physics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more