Skip to main content
padlock icon - secure page this page is secure

Affective State Classification Through CMAC-Based Model of Affects (CCMA) Using SVM

Buy Article:

$106.51 + tax (Refund Policy)

A number of computational models have been proposed to perform emotion profiling through affective state classification using EEG signals. However, such models do not include both temporal and spatial dynamic of the signals. It is also observed that the performance of classifying emotion using the existing models produce high classification accuracy on one subject, but not on different subjects. Thus, in this paper CMAC-based Computational Model of Affects (CCMA) is proposed as feature extraction for the classification task. CCMA keeps the temporal and spatial dynamics of EEG signals to produce better classification performance. Using Support Vector Machine (SVM) as classifier, the features produce higher classification accuracy for heterogeneous test.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Affective Computing; CCMA; EEG; SVM

Document Type: Research Article

Affiliations: Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia

Publication date: November 1, 2017

More about this publication?
  • ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more