Skip to main content
padlock icon - secure page this page is secure

The Assimilation of Multi-Type Information for Seasonal Precipitation Forecasting Using Modular Neural Network

Buy Article:

$106.51 + tax (Refund Policy)

The rainfall occurrences are triggered by different types of climate sources not restricted to past precipitation values but may include climate indices such as El Nino/Southern Oscillation, Indian Ocean Dipole, and Madden Julian Oscillation. In this paper, we investigated the effectiveness of assimilating two sources of inputs for heavy precipitation forecasting using modular neural network. The assimilated input was obtained by merging two input variable sources (climate indices and precipitation records) according to their individual weighting factor determined by correlation test. To simulate the hydrologic response using merged product, a modular neural network model was developed. The modular concept was implemented by separating the precipitation events based on seasonal monsoon and trained the subset of seasonal data using modular neural network. Four subsets of monthly precipitation data were sampled to evaluate modular neural network model at 1-month lead-time with single precipitation neural network model and multiple linear regression as benchmark models. The results show that the merging method can effectively assimilate information from two sources of inputs to improve the accuracy of heavy precipitation forecasting.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Artificial Neural Network; Merging Method; Multiple Linear Regression; Precipitation Forecasting

Document Type: Research Article

Affiliations: Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan, Pahang, Malaysia

Publication date: November 1, 2017

More about this publication?
  • ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more