Skip to main content

A Comparison Framework of Classification Models for Software Defect Prediction

Buy Article:

Your trusted access to this article has expired.

$107.14 + tax (Refund Policy)

Software defects are expensive in quality and cost. The accurate prediction of defect-prone software modules can help direct test effort, reduce costs, and improve the quality of software. Machine learning classification algorithms is a popular approach for predicting software defect. Various types of classification algorithms have been applied for software defect prediction. However, no clear consensus on which algorithm perform best when individual studies are looked at separately. In this research, a comparison framework is proposed, which aims to benchmark the performance of a wide range of classification models within the field of software defect prediction. For the purpose of this study, 10 classifiers are selected and applied to build classification models and test their performance in 9 NASA MDP datasets. Area under curve (AUC) is employed as an accuracy indicator in our framework to evaluate the performance of classifiers. Friedman and Nemenyi post hoc tests are used to test for significance of AUC differences between classifiers. The results show that the logistic regression perform best in most NASA MDP datasets. Naive bayes, neural network, support vector machine and k* classifiers also perform well. Decision tree based classifiers tend to underperform, as well as linear discriminant analysis and k-nearest neighbor.

Document Type: Research Article

Publication date: October 1, 2014

More about this publication?
  • ADVANCED SCIENCE LETTERS is an international peer-reviewed journal with a very wide-ranging coverage, consolidates research activities in all areas of (1) Physical Sciences, (2) Biological Sciences, (3) Mathematical Sciences, (4) Engineering, (5) Computer and Information Sciences, and (6) Geosciences to publish original short communications, full research papers and timely brief (mini) reviews with authors photo and biography encompassing the basic and applied research and current developments in educational aspects of these scientific areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content