Skip to main content
padlock icon - secure page this page is secure

Synthesis of Graphene Oxide/Polyaniline Composites for Hydrogen Storage

Buy Article:

$106.61 + tax (Refund Policy)

In the present work, we synthesized graphene oxide/polyaniline (GO-PANI) composites using in situ chemical oxidative polymerization method and investigate their hydrogen storage properties. The morphological and structural properties of synthesized composites have been studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman Spectroscopy. SEM images showed the uneven granular shaped structure of GO-PANI composite, where polyaniline (PANI) wrapped smoothly on the surface of graphene oxide (GO) flakes. The characteristic peaks appeared in XRD and Raman spectrum clearly revealed the structural phase and chemical identity of the composite. The hydrogen adsorption capacity of PANI, GO-PANI and GO composite was determined at room temperature and observed to be 0.47, 0.80 and 1.90 wt.% respectively. The low storage density for GO-PANI nanocomposite might be due to the PANI matrix which wrapped on the surface of graphene oxide. This results in the reduction of reactive surface area, porosity and interrupts functional group with aniline molecules and reduces the interlayer distance. Whereas, for graphene oxide, functional groups work as spacer in between graphene layers which, in turn, increase the interlayer distance to enhance storage density.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: GRAPHENE OXIDE; HYDROGEN STORAGE CAPACITY; IN-SITU CHEMICAL SYNTHESIS; MATERIALS' CHARACTERISATION; POLYANILINE

Document Type: Research Article

Publication date: May 1, 2017

More about this publication?
  • Advanced Science, Engineering and Medicine (ASEM) is a science, engineering, technical and medical journal focused on the publishing of peer-reviewed multi-disciplinary research articles dealing with all fundamental and applied research aspects in the areas of (1) Physical Sciences, (2) Engineering, (3) Biological Sciences/Health Sciences, (4) Medicine, (5) Computer and Information Sciences, (6) Mathematical Sciences, (7) Agriculture Science and Engineering, (8) Geosciences, and (9) Energy/Fuels/Environmental/Green Science and Engineering.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more