
Human Physiological Responses to Cold Exposure
Stocks JM, Taylor NAS, Tipton MJ, Greenleaf JE. Human physiological responses to cold exposure. Aviat Space Environ Med 2004; 75:444–457.
Thermal energy is transferred within and between bodies via several avenues, but for most unprotected human cold exposures, particularly during immersion, convective heat loss dominates. Lower tissue temperatures stimulate thermoreceptors, and the resultant afferent flow elicits autonomic homoeostatic responses (thermogenesis and vasoconstriction) that regulate body temperature within a narrow range. The most powerful effector responses occur when both superficial and deep thermoreceptors are cooled simultaneously, but thermoeffector activation can also occur as a result of peripheral cooling alone. The responses to cold, and the hazards associated with cold exposure, are moderated by factors which influence heat production and heat loss, including the severity and duration of cold stimuli, accompanying exercise, the magnitude of the metabolic response, and individual characteristics such as body composition, age, and gender. Cold stress can quickly overwhelm human thermoregulation with consequences ranging from impaired performance to death. This review provides a comprehensive overview of the human physiological responses to acute cold exposure.
Thermal energy is transferred within and between bodies via several avenues, but for most unprotected human cold exposures, particularly during immersion, convective heat loss dominates. Lower tissue temperatures stimulate thermoreceptors, and the resultant afferent flow elicits autonomic homoeostatic responses (thermogenesis and vasoconstriction) that regulate body temperature within a narrow range. The most powerful effector responses occur when both superficial and deep thermoreceptors are cooled simultaneously, but thermoeffector activation can also occur as a result of peripheral cooling alone. The responses to cold, and the hazards associated with cold exposure, are moderated by factors which influence heat production and heat loss, including the severity and duration of cold stimuli, accompanying exercise, the magnitude of the metabolic response, and individual characteristics such as body composition, age, and gender. Cold stress can quickly overwhelm human thermoregulation with consequences ranging from impaired performance to death. This review provides a comprehensive overview of the human physiological responses to acute cold exposure.
Keywords: cold immersion; cold shock; hypothermia; shivering; skin blood flow; thermogenesis; thermoregulation
Document Type: Research Article
Publication date: May 1, 2004
- The peer-reviewed monthly journal, Aviation, Space, and Environmental Medicine (ASEM) provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications. It is the most used and cited journal in its field. ASEM is distributed to more than 80 nations.
To access volumes 86 to present, please click here. - Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- Information for Advertisers
- Submit Articles
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content