Skip to main content

Modern Magnetic Resonance Imaging Modalities to Advance Neuroimaging in Astronauts

Buy Article:

$27.00 + tax (Refund Policy)

INTRODUCTION: The rapid development of the space industry requires a deeper understanding of spaceflight’s impact on the brain. MRI research reports brain volume changes following spaceflight in astronauts, potentially affecting cognition. Recently, we have demonstrated that this evidence of volumetric changes, as measured by typical T1-weighted sequences (e.g., magnetization-prepared rapid gradient echo sequence; MPRAGE), is error-prone due to the microgravity-related redistribution of cerebrospinal fluid in the brain. More modern neuroimaging methods, particularly dual-echo MPRAGE (DEMPRAGE) and magnetization-prepared rapid gradient echo sequence utilizing two inversion pulses (MP2RAGE), have been suggested to be resilient to this error. Here, we tested if these imaging modalities offered consistent segmentation performance improvements in some commonly employed neuroimaging software packages.

METHODS: We conducted manual gray matter tissue segmentation in traditional T1w MRI images to utilize for comparison. Automated tissue segmentation was performed for traditional T1w imaging, as well as on DEMPRAGE and MP2RAGE images from the same subjects. Statistical analysis involved a comparison of total gray matter volumes for each modality, and the extent of tissue segmentation agreement was assessed using a test of similarity (Dice coefficient).

RESULTS: Neither DEMPRAGE nor MP2RAGE exhibited consistent segmentation performance across all toolboxes tested.

DISCUSSION: This research indicates that customized data collection and processing methods are necessary for reliable and valid structural MRI segmentation in astronauts, as current methods provide erroneous classification and hence inaccurate claims of neuroplastic brain changes in the astronaut population.

Berger L, Burles F, Jaswal T, Williams R, Iaria G. Modern magnetic resonance imaging modalities to advance neuroimaging in astronauts. Aerosp Med Hum Perform. 2024; 95(5):245–253.

Keywords: cerebrospinal fluid; dura; gray matter; spaceflight; tissue segmentation; volumetry

Document Type: Research Article

Publication date: May 1, 2024

More about this publication?
  • This journal (formerly Aviation, Space, and Environmental Medicine), representing the members of the Aerospace Medical Association, is published monthly for those interested in aerospace medicine and human performance. It is devoted to serving and supporting all who explore, travel, work, or live in hazardous environments ranging from beneath the sea to the outermost reaches of space. The original scientific articles in this journal provide the latest available information on investigations into such areas as changes in ambient pressure, motion sickness, increased or decreased gravitational forces, thermal stresses, vision, fatigue, circadian rhythms, psychological stress, artificial environments, predictors of success, health maintenance, human factors engineering, clinical care, and others. This journal also publishes notes on scientific news and technical items of interest to the general reader, and provides teaching material and reviews for health care professionals.

    To access volumes 74 through 85, please click here.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Submit Articles
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content