Skip to main content
padlock icon - secure page this page is secure

Free Content Preparation and Dielectric Properties of Mn-Doped Ba0.6Sr0.4TiO3-MgTiO3 Composite Ceramics

Download Article:
(PDF 1,786.7 kb)
Barium strontium titanate (Ba0.6Sr0.4TiO3, BST) nano-powders were prepared using Ba(NO3)2, Sr(NO3)2, oxalic acid dehydrate, and tetrabutyl titanate (Ti(OC4H9)4) as precursors by the chemical co-precipitation method. The product was characterized by thermogravimetry-differential scanning calorimetry (TG-DSC) thermal analyses, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The experimental results indicated that the resulting Ba0.6Sr0.4TiO3 nano-powders were homogeneous with agglomerated nature. The Ba0.6Sr0.4TiO3-MgTiO3 (BST-MT) bulk composite ceramics doped by Mn were obtained by the traditional solid phase method. The XRD patterns demonstrated that Mn-doped BST was unable to change the perovskite crystalline structure of BST materials. SEM photographs revealed that the crystalline grains became larger with increasing the content of doping Mn (<1.5% (x, molar fraction)) and then the size of grains decreased after the Mn content exceeded 1.5%in the BST ceramics, suggesting the effect of Mn doping on the morphologies of BST-MT composites. The dielectric properties of BST-MT composite ceramics doped with 0.1%-2.0% (x)Mn were investigated systematically. Two effects of Mn doping on the dielectric properties of the BST-MT composite ceramics were observed. At low Mn doping concentrations (<1.5%), Mn mainly acted as an acceptor dopant to replace Ti at the B site of ABO3 perovskite structure, leading to a diffused phase transition. It was also observed that the grain size increased drastically as the Mn content increased and thus caused the decrease of dielectric loss. At higherMn doping concentrations (>1.5%), the grain size decreased and the suppression of permittivity and the drastic increase of the dielectric losses were observed, which indicated a“composite”mixing effect.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Bariumstrontiumtitanate; Dielectric property; Microstructure; Mn doping

Document Type: Research Article

Publication date: 15 August 2008

More about this publication?
  • Acta Physico-Chimica Sinica, founded in 1985, is sponsored by the Chinese Chemical Society and organized by the College of Chemistry and Molecular Engineering, PekingUniversity. Since 1997, Acta Physico-Chimica Sinica has been indexed in SCI of ISI (US). Acta Physico-Chimica Sinica is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and material physical chemists. Manuscripts that are essentially reporting data, applications of data, or reviews of the literature are not suitable for publication in Acta Physico-Chimica Sinica.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more