Skip to main content
padlock icon - secure page this page is secure

Ground and Flight Tests of an Unmanned Rotorcraft with Cable-Driven Robotic Landing Gear

Buy Article:

$35.00 + tax (Refund Policy)

Robotic landing gear enhances the landing capabilities of vertical take-off and landing aircraft on sloped, rough, and even moving landing surfaces. This research demonstrates the integration and systematic testing of a robotic landing gear system for the commercial S-100 Camcopter, expanding the aircraft's landing capabilities to currently inaccessible terrains with slopes at and above 15°. An overview of the mechanical design, sensors, and controller as integrated into the S-100 rotorcraft is provided along with expected landing performance from simulations tools. The system is then demonstrated using ground and flight experiments, and performance metrics are found to match design metrics. An asymmetry in left and right leg landings during flight testing is observed and analyzed. Lastly, cross-coupling of pitch and roll rates induced by the rotor is discussed as a cause of the asymmetry on this three-legged rotorcraft.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: October 1, 2021

This article was made available online on June 17, 2021 as a Fast Track article with title: "Ground and Flight Tests of an Unmanned Rotorcraft with Cable-Driven Robotic Landing Gear".

More about this publication?
  • The Journal of the AHS is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by The Vertical Flight Society and presents innovative papers covering the state-of-the-art in all disciplines of VTOL design, research and development. (Please note that VFS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are VFS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the VFS website.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more