Skip to main content

Experimental Analysis of the Aerodynamics of Long-Shrouded Contrarotating Rotor in Hover

Buy Article:

$35.00 + tax (Refund Policy)

This paper aims to quantify the benefits of a shrouded coaxial rotor configuration through experimental comparisons with free (not shrouded) rotors in hover. The experiment shows that both the figure of merit of contrarotating rotors and the system power loading are improved by the shroud inclusion. Improvements are induced by a suction effect at the inlet, which can be optimized by a regulation effect of the mass flow. Compared to free rotors, the strong suction peak formed on the shroud leading edge by a 65% increase in mass flow, allowing the shroud to contribute up to 56% of the total thrust. More uniform pressure distribution in the downstream rotor and less contraction of the slipstream decrease losses and increase the rotor efficiency. The shrouded system efficiency is further improved if the upstream rotor rotates slower than the rear one, for a given total shaft power, because a stronger pressure depression occurs upstream of the rotors to generate more mass flow. On the other hand, the system behavior is insensitive to the interrotor distance.

Document Type: Research Article

Publication date: October 1, 2015

More about this publication?
  • The Journal of the AHS is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by The Vertical Flight Society and presents innovative papers covering the state-of-the-art in all disciplines of VTOL design, research and development. (Please note that VFS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are VFS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the VFS website.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content