Skip to main content
padlock icon - secure page this page is secure

Open Access Effects of Nesting Material on Energy Homeostasis in BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) Mice Housed at 20 °C

Download Article:
(PDF 279 kb)
Discrepancies exist between the preferred temperature range for mice (26 to 32 °C) and current recommendations (20 to 26 °C), which may alter metabolism and negatively affect studies using mice. Previous research indicates that nesting material can alleviate cold stress in mice; therefore, we sought to determine the effects of the amount of nesting material provided (0, 6, or 12 g) on heat energy loss and energy balance in 3 mouse strains housed at currently recommended temperatures during the daytime, a period of presumed inactivity. Groups of BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) mice, balanced by strain and sex, were group-housed and provided 0, 6, or 12 g of nesting material. After a 3-d acclimation period, body weight was determined daily at 0800, food intake was determined at 0800 and 2000, and total heat production was evaluated from 0800 to 2000 on 4 consecutive days and used to calculate energy balance and the respiratory quotient. Although the amount of nesting material had no overall effect on food intake or heat production, mice provided 12 g of nesting material had greater weight gain than those given 0 or 6 g. This increase in body weight might have been due to improved energy balance, which was corroborated by an increased respiratory quotient in mice provided 12 g of nesting material. In summary, although heat production did not differ, providing 12 g of nesting material improved energy balance, likely leading to an increase in body weight during the 0800–2000 testing period.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Livestock Behavior Research Unit, USDA-ARS, West Lafayette, Indiana;, Email: [email protected] 2: Department of Animal Sciences, Purdue University, West Lafayette, Indiana 3: Department of Agricultural and Biological Engineering, University of Illinois, Urbana-Champaign, Illinois

Publication date: May 1, 2017

More about this publication?
  • The Journal of the American Association for Laboratory Animal Science (JAALAS) serves as an official communication vehicle for the American Association for Laboratory Animal Science (AALAS). The journal includes a section of refereed articles and a section of AALAS association news. The mission of the refereed section of the journal is to disseminate high-quality, peer-reviewed information on animal biology, technology, facility operations, management, and compliance as relevant to the AALAS membership. JAALAS accepts research reports (data-based) or scholarly reports (literature-based), with the caveat that all articles, including solicited manuscripts, must include appropriate references and must undergo peer review.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1997
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more