Skip to main content

Open Access Characterization Methodology for Biological Plywoods Based on Characteristic Cross-Section Patterns

This article is Open Access under the terms of the Creative Commons CC BY licence.

Biological plywoods are solid analogues of liquid crystalline phases whose building blocks, including cellulose, collagen and chitin, present multifunctionality, providing in some cases protection, camouflage, self-healing and/or adaptability to the surrounding environment. The 3D ordered structure is the main factor for these fascinating properties, and the assessment of the structure-property relationship will be a powerful tool in terms of future material design and innovation. Cross-section observations lead to characteristic patterns depending on the specific arrangement of the plywood's building blocks. Twisted plywood architectures, known as the Bouligand structure, lead to the widely observed arced patterns which can be ideal or nonideal depending on whether the relationship between the twist angle and the spatial coordinate is linear or not. The latter is the case of nonideal and the projected arcs to the incision plane do not have a constant periodicity. On the other hand, orthogonal plywoods project into herringbone patterns when the incision angle is adequate. In either case, arcs or herringbones, key characteristic variables, have been identified that provide quantitative means that relate them to structural variables such as the pitch and the helix location. Based on this quantitative information we proposed a methodology to characterize the plywoods when these characteristic patterns are accessible. The method has been validated using in-vivo and in-silico observations, where the latter were obtained using Mayavi, a general purpose 3D visualization software. In this article we present a new analysis of plywoods' mechanics using Krenchel's formalism and we give a broad and unifying vision of our recent findings regarding cross-section reconstruction techniques of several biological plywoods along with recommendations that increase accuracy in the predictions.

Keywords: BIOLOGICAL LIQUID CRYSTALS; BIOLOGICAL PLYWOODS; CROSS-SECTION PATTERNS

Document Type: Research Article

Publication date: 01 August 2016

More about this publication?
  • This journal publishes high quality peer reviewed original research and review articles on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. JRM showcases both fundamental aspects and applications of renewable materials. The fundamental topics include the synthesis and polymerization of biobased monomers and macromonomers, the chemical modification of natural polymers, as well as the characterization, structure-property relationships, processing, recycling, bio and environmental degradation and life cycle analysis of the ensuing materials, in view of their potential applications. Within this sustainability approach, green chemistry processes and studies falling within biorefinery contexts are strongly favored.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content