Skip to main content

Identification of Multiple Subcellular Locations for Proteins in Budding Yeast

Buy Article:

$68.00 + tax (Refund Policy)

Knowing the subcellular locations of a protein helps to explore its functions in vivo since a protein can only play its roles properly if and only if it is located at certain subcellular compartments. Since it is both time-consuming and costly to determine protein subcellular localization purely by means of the conventional biotechnology experiments, computational methods play an important complementary role in this regard. Although a number of computational methods have been developed for predicting protein subcellular localization, it remains a challenge to deal with the multiplex proteins that may simultaneously exist at, or move between, two or more different locations. Here, a new predictor called Sort-PLoc was developed to tackle such a difficult and challenging problem. The key step was to select protein domains to code the protein samples by Incremental Feature Selection method. In each prediction, a series of subcellular locations were sorted descendingly according to their likelihood to be the site where the query protein may reside. Based on the selected domain set, the importance of Gene Ontology (GO) terms and domains in the contribution to the prediction was analyzed that may provide useful insights to the relevant areas. For the convenience of the broad experimental scientists, a user-friendly web-server for Sort-PLoc was established that is freely accessible to the public at http://yscl.biosino.org/.





Keywords: Amino acid; Gene Ontology; Multi subcellular locations; Nearest Neighbor Algorithm; Neighbor Algorithm; incremental feature selection; macromolecular complex; pseudo amino acid composition; sort-PLoc

Document Type: Research Article

Publication date: 01 March 2011

More about this publication?
  • Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a wide range of the integration of biology with computer and information science.

    The journal focuses on reviews on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.

    Current Bioinformatics is an essential journal for all academic and industrial researchers who want expert knowledge on all major advances in bioinformatics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content