Skip to main content

Organotypic Cultures as Tools for Testing Neuroactive Drugs - Link Between In-Vitro and In-Vivo Experiments

Buy Article:

$68.00 + tax (Refund Policy)

The development of neuroactive drugs is a time consuming procedure. Candidate drugs must be run through a battery of tests, including receptor studies and behavioural tests on animals. As a rule, numerous substances with promising properties as assessed in receptor studies must be eliminated from the development pipeline in advanced test phases because of unforeseen problems like intolerable side-effects or unsatisfactory performance in the whole organism. Clearly, test systems of intermediate complexity would alleviate this inefficiency. In this review, we propose cultured organotypic brain slices as model systems that could bridge the ‘interpolation gap’ between receptors and the brain, with a focus on the development of new general anaesthetics with lesser side effects.

General anaesthesia is based on the modulation of neurotransmitter receptors and other conductances located on neurons in diverse brain regions, including cerebral cortex and spinal cord. It is well known that different components of general anaesthesia, e.g. hypnosis and immobility, are produced by the depression of neuronal activity in distinct brain regions. The ventral horn of the spinal cord is an important structure for the induction of immobility. Thus, the potentially immobilizing effects of a newly designed drug can be estimated from its depressant effect on neuronal network activity in cultured spinal slices. A drug's sedative and hypnotic potential can be examined in cortical cultures. Combined with genetically engineered mice, this approach can point to receptor subtypes most relevant to the drug's intended net effect and in return can help in the design of more selective drugs. In conclusion, the use of organotypic cultures permits predictions of neuroactive properties of newly designed drugs on an intermediate level, and should therefore open up avenues for a more creative and economic drug development process.



Keywords: GABA(A) receptor; GABAergic interneurons; Metabotropic GABAB receptors; Organotypic cultures; Pyramidal neurons; allosteric binding site; amnestic; amygdala; anaesthetics; antiepileptic; benzodiazepines; bicuculline; brain stem; cerebellum; cholinergic neurons; cortex; dopaminergic cells; electroencenphalogram (EEG); extrasynaptic sites; hippocampus; human embryo kidney (HEK); immobilizing effects; inhibitory postsynaptic currents; ionotropic GABAA receptors; local field potential (LFP); mivacurium; neocortex; neurotransmitters; phosphorylation; potassium channels; propofol; rocuronium; spinal cord; synchronizing; thalamic axon

Document Type: Research Article

Publication date: 01 December 2010

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content