Skip to main content

Proteomics Can Help to Gain Insights into Metabolic Disorders According to Body Reserve Availability

Buy Article:

$68.00 + tax (Refund Policy)

Metabolic disorders are amongst the most serious medical problems that are encountered in modern societies. To unravel the molecular mechanisms that underlie the metabolic adaptations to disturbed energy balance, wild and laboratory animal models are of primary importance. Previous studies have highlighted some aspects of the metabolic and endocrine variations that are triggered by marked energy reserve depletion/repletion. A brief overview of studies addressing the adaptive mechanisms to fasting/refeeding is presented here. This review also emphasises the necessity to not only consider gene or protein expression levels but to also take into account protein structures, to enable one to fully unravel the exact steps of intermediary metabolism and/or signal transduction pathways that are modulated by nutritional transitions. In this context, proteomic analysis, which uses high-performance tools for peptide/protein separation and mass spectrometry, has emerged as an indispensable tool to elucidate the complex molecular basis of various pathophysiological processes. Proteomics provides a global view of the protein dynamics in a given tissue of any organism. It provides hundreds of protein identifications and quantifications, as well as structure characterizations, from a single complex biological sample. Therefore, proteomic analysis is detailed here in terms of its analytical approaches, strategies, methods, instrumentation, and its limitations. The benefits of performing such analysis are discussed in the context of the fasting/refeeding paradigm and expected insights into the associated molecular mechanisms. Importantly, unravelling the adaptive responses to food deprivation may provide new therapeutic targets for the treatment and/or prevention of numerous pathophysiological conditions characterized by energy depletion

Keywords: Prolonged food deprivation; body reserves; cross-species identifications; mass spectrometry; protein characterization and quantification; refeeding signal; sample fractionation; structure-function relationships

Document Type: Research Article

Affiliations: IPHC-DSA, ULP, CNRS; 25 rue Becquerel, 67087 Strasbourg, France.

Publication date: 01 October 2008

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content