Skip to main content

Fabrication and Biofunctionalization of Selenium-Polypyrrole Core–Shell Nanoparticles for Targeting and Imaging of Cancer Cells

Buy Article:

$107.14 + tax (Refund Policy)

Selenium-polypyrrole core–shell nanoparticles are fabricated by an in-situ polymerization process and functionalized with transferrin for targeting and imaging of human cervical cancer cells. The shell thickness and chemical composition of the as-synthesized particles can be manipulated by controlling the precursor concentration. The presence of the polymer layer can greatly increase the thermal stability of the selenium nanoparticles. The presence of transferrin molecules on the surface of the core–shell nanoparticles can significantly enhance their cellular uptake. The tranferrin-conjugated core–shell nanoparticles can be potentially used for the targeting and imaging of cancer cells.

Keywords: CANCER CELLS; NANOPARTICLE; POLYPYRROLE; SELENIUM; TRANSFERRIN

Document Type: Short Communication

Publication date: 01 May 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content