Skip to main content

Controlling the Interaction Between Cells and Silica Nanoparticles

Buy Article:

$107.14 + tax (Refund Policy)

In recent years, the application of silica nanoparticles in the biomedical field experienced a great development, showing a sharp increase in the number of published articles and patents. The driving forces for these and future developments are the possibility to design nanoparticles with homogeneous size and structure and amenable to specific grafting. In this way, it is possible to control the interaction of nanoparticles with cells. Moreover, it is possible to tune the characteristics of the nanoparticles to meet the requirements of each specific cell and desired application. Herein, we present different strategies developed to optimize the size, morphology, surface topography, elemental ratio, hydrophobic/hydrophilic balance, and erosion rate, which contribute to understand the nature of this inherently complicated cell-nanoparticles interactions mechanism, which will determine the resulting function performance.

Keywords: CELLS; NANOPARTICLES; SILICA; TOXICITY

Document Type: Review Article

Publication date: 01 February 2013

More about this publication?
  • Journal of Biomaterials and Tissue Engineering (JBT) is an international peer-reviewed journal that covers all aspects of biomaterials, tissue engineering and regenerative medicine. The journal focuses on the broad spectrum of research topics including all types of biomaterials, their properties, bioimplants and medical devices, biofilms, bioimaging, BioMEMS/NEMS, biosensors, fibers, tissue scaffolds, tissue engineering and modeling, artificial organs, tissue interfaces, interactions between biomaterials, blood, cells, tissues, and organs, regenerative medicine and clinical performance.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content