Skip to main content

Biodegradable Core–Shell Copolymer-Phospholipid Nanoparticles for Combination Chemotherapy: An In Vitro Study

Buy Article:

$107.14 + tax (Refund Policy)

In the present study, we developed novel core–shell-type lipid/particle assemblies comprising poly(lactic-co-glycolic acid) nanoparticle cores coated with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine shell. Hydrophobic dihydroartemisinin and hydrophilic doxorubicin were co-loaded in the core–shell-type lipid/particle assemblies for combination chemotherapy. The physicochemical properties of the dual drug-loaded core–shell-type lipid/particle assemblies were characterized. The results of colorimetric cell viability assay and cellular uptake experiments demonstrated that the lipid/particle hybrid could increase the accumulation of doxorubicin accumulation in cell nuclei, thus enhancing cell cytotoxicity. This effect contributed to the high treatment efficiency of dihydroartemisinin and doxorubicin. These biodegradable lipid/polymer hybrid particles could be promising delivery systems to improve combination chemotherapy.

Keywords: BIODEGRADABLE; COMBINATION CHEMOTHERAPY; CORE–SHELL-TYPE; DOXORUBICIN; HYBRID PARTICLES

Document Type: Research Article

Publication date: 01 July 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content