Skip to main content

Growth and Characterization of InP Ringlike Quantum-Dot Molecules Grown by Solid-Source Molecular Beam Epitaxy

Buy Article:

$107.14 + tax (Refund Policy)

In this paper, we have studied the fabrication of InP ringlike quantum-dot molecules on GaAs(001) substrate grown by solid-source molecular beam epitaxy using droplet epitaxy technique and the effect of In deposition rate on the physical and optical properties of InP ringlike quantum-dot molecules. The In deposition rate is varied from 0.2 ML/s to 0.4, 0.8 and 1.6 ML/s. The surface morphology and cross-section were examined by ex-situ atomic force microscope and transmission electron microscope, respectively. The increasing of In deposition rate results in the decreasing of outer and inner diameters of InP ringlike quantum-dot molecules and height of InP quantum dots but increases the InP quantum dot and ringlike quantum-dot molecule densities. The photoluminescence peaks of InP ringlike quantum-dot molecules are blue-shifted and FWHM is narrower when In deposition rate is bigger.

Keywords: GAAS; INGAP; INP; MOLECULAR BEAM EPITAXY AND DROPLET EPITAXY; QUANTUM-DOT MOLECULE

Document Type: Research Article

Publication date: 01 November 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content