Skip to main content

Enhanced Treatment Properties of Iron Oxide Amended Sands Coupled with Polyelectrolyte to Humic Acid

Buy Article:

$22.00 plus tax (Refund Policy)

ABSTRACT: 

To improve the removal efficiency of micropollutant humic acid at low temperature, microflocculation filtration experiments were conducted with homemade iron oxide amended sands (IOAS), cationic polyelectrolyte (CPE) and polyaluminium chloride (PACl). Fractal properties of flocs structures and IOAS surface and their effects on the removal efficiency of humic acid were investigated. Results showed that IOAS had a porous surface with fractal dimensions (D) (D = 1.744) and a strong adsorption capacity for humic acid. The flocs produced by PACl were small in size, loosely packed with a higher D, and therefore settled slowly. By contrast, the formed flocs by adding CPE with only 1~5% of PACl had strong and open structures with a high effective density, rapid settling velocity and a lower D. Compared with PACl flocs, the larger size CPE flocs and PACl+CPE flocs deposited and packed up on IOAS, creating smaller pores and resulting in a lower D and higher filtration capacity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: cationic polyelectrolyte; fractal dimension; fractal properties; iron oxide amended sand; low temperature micropolluted raw water; microflocculation depth-bed filtration behaviors

Document Type: Research Article

Publication date: 01 February 2018

This article was made available online on 14 March 2017 as a Fast Track article with title: "Enhanced treatment properties of iron oxide amended sands coupled with polyelectrolyte to Humic Acid".

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more