Skip to main content

Effects of Uncertainty in Model Predictions of Individual Tree Volume on Large Area Volume Estimates

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Forest inventory estimates of tree volume for large areas are typically calculated by adding model predictions of volumes for individual trees. However, the uncertainty in the model predictions is generally ignored with the result that the precision of the large area volume estimates is overestimated. The primary study objective was to estimate the effects of model residual variability and model parameter uncertainty on large area volume estimates and their uncertainties for a study area in northeastern Minnesota, USA. Monte Carlo simulation approaches were used because of the complexities associated with multiple sources of uncertainty and the nonlinear nature of the models. Two conclusions were important. First, for this study, the effects of uncertainty in model predictions on the large area volume estimates and their uncertainties were small when the models were calibrated using an average of 100 or more observations per species and when the average proportion of variance explained by the models was at least 0.95. Second, large area estimates and their uncertainties based on coniferous/deciduous and nonspecific models deviated very little from large area estimates based on species-specific models.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Monte Carlo simulation; allometric model; model parameter uncertainty; residual uncertainty

Document Type: Research Article

Publication date: 01 February 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more