Skip to main content

Open Access Modeling Hydrokinetic Turbine Performance in the Mississippi River

Abstract

Free Flow Power has developed a renewable energy technology that can convert the kinetic energy flowing in a river to electricity without the use of dams. The company plans to install a specially made turbine directly into the flowing stream. This process, known as hydrokinetics, is an innovative approach that provides energy at a reliable and predictable rate as opposed to other intermittent renewable energy sources. There are currently two dozen hydrokinetic projects in the licensing process along the Mississippi River, which will account for 4,000 MW of power-generating capacity. Hydrokinetics could develop into a $1 billion a year industry.

This article describes the modeling tool developed for Free Flow Power’s hydrokinetic sites along the Mississippi River. The performance models compare river velocity, power generation, reliability, maintenance costs, and finance options to establish a likely performance profile for a proposed site.

These models calculate the expected returns for Mississippi River projects and can be used to perform a sensitivity analysis on all of the major variables for hydrokinetics. The unique aspect of this performance model is the incorporation of a reliability calculator, which estimates the lost revenue resulting from component failures. It can be used to develop the maintenance strategy for the array and to evaluate the total cost of reliability for components. The modeling tool described provides Free Flow Power with the ability to compare different design scenarios and quickly gives an estimate of a site’s performance.

Keywords: cost optimized maintenance; hydrokinetics; performance modeling; renewable energy; total cost of reliability

Document Type: Research Article

Publication date: 01 July 2013

More about this publication?
  • The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
  • Submit a Paper
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content