Skip to main content

Investigations Into the Velocity and Distance Perception of Moving Sound Sources

Buy Article:

$25.00 plus tax (Refund Policy)

Temporal loudness changes, binaural cues and Doppler shift can all influence distance perception of moving sound sources. This article will analyze different auditory distance perception cues of moving sound sources. In psychoacoustic experiments, the subjects were presented with dichotic and diotic stimuli of a set of reallife recordings taken from a passing passenger car and then asked to determine the velocity of the object and its minimal distance from the listener. The results of the listening experiments allow us to separate monaural distance perception cues from binaural ones, and thus show that binaural cues contribute significantly to the perception of velocity. For short distances and high velocities, the presentation of binaural cues causes a decrease in the perceived velocity while for long distances and low velocities this causes a clear increase. By estimating the minimal distance from the passing object, one observes a significant difference between dichotic and diotic presentation, which can be explained by an increased loudness of dichotic stimuli due to the binaural masking level difference (BMLD). Furthermore, it is shown that the main parameter for distance determination is the maximum sound pressure level at the listener's position. However, dynamic cues (change of sound pressure level over time, Doppler shift) are of considerable importance for the plausibility of the auditory scene.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2009-07-01

More about this publication?
  • Acta Acustica united with Acustica, published together with the European Acoustics Association (EAA), is an international, peer-reviewed journal on acoustics. It publishes original articles on all subjects in the field of acoustics, such as general linear acoustics, nonlinear acoustics, macrosonics, flow acoustics, atmospheric sound, underwater sound, ultrasonics, physical acoustics, structural acoustics, noise control, active control, environmental noise, building acoustics, room acoustics, acoustic materials, acoustic signal processing, computational and numerical acoustics, hearing, audiology and psychoacoustics, speech, musical acoustics, electroacoustics, auditory quality of systems. It reports on original scientific research in acoustics and on engineering applications. The journal considers scientific papers, technical and applied papers, book reviews, short communications, doctoral thesis abstracts, etc. In irregular intervals also special issues and review articles are published.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more