Skip to main content

Free Content Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein

Antarctic sea ice diatoms produce ice-binding proteins (IBPs) that are strong inhibitors of the recrystallization of ice. Their function may be to reduce cell damage in the frozen state. We show here that an IBP from the diatom Navicula glaciei Vanheurck also has the ability to reduce freeze-thaw damage to red blood cells and that the effect may be due to its ability to inhibit recrystallization of ice.

Keywords: CRYOPRESERVATION; DIATOM; ICE-ACTIVE SUBSTANCE; RECRYSTALLIZATION INHIBITION

Document Type: Regular Paper

Publication date: 01 September 2004

More about this publication?
  • CryoLetters is a bimonthly international journal for low temperature sciences, including cryobiology, cryopreservation or vitrification of cells and tissues, chemical and physical aspects of freezing and drying, and studies involving ecology of cold environments, and cold adaptation

    The journal publishes original research reports, authoritative reviews, technical developments and commissioned book reviews of studies of the effects produced by low temperatures on a wide variety of scientific and technical processes, or those involving low temperature techniques in the investigation of physical, chemical, biological and ecological problems.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content