Skip to main content

Phenotype and Stability of Neural Differentiation of Androgenetic Murine ES Cell-Derived Neural Progenitor Cells

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Uniparental zygotes with two paternal (androgenetic, AG) or two maternal genomes (gynogenetic, GG) cannot develop into viable offsprings but form blastocysts from which pluripotent embryonic stem (ES) cells can be derived. For most organs, it is unclear whether uniparental ES cells can give rise to stably expandable somatic stem cells that can repair injured tissues. Even if previous reports indicated that the capacity of AG ES cells to differentiate in vitro into pan-neural progenitor cells (pNPCs) and into cells expressing neural markers is similar to biparental [normal fertilized (N)] ES cells, their potential for functional neurogenesis is not known. Here we show that murine AG pNPCs give rise to neuron-like cells, which then generate sodium-driven action potentials while maintaining fidelity of imprinted gene expression. Neural engraftment after intracerebral transplantation was achieved only by late (22 days) AG and N pNPCs with in vitro low colony-forming cell (CFC) capacity. However, persisting CFC formation seen, in particular, in early (13 or 16 days) differentiation cultures of N and AG pNPCs correlated with a high incidence of trigerm layer teratomas. As AG ES cells display functional neurogenesis and in vivo stability similar to N ES cells, they represent a unique model system to study the roles of paternal and maternal genomes on neural development and on the development of imprinting-associated brain diseases.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Brain injury; Electrophysiology; Embryonic stem (ES) cell; Teratoma; Uniparental

Document Type: Research Article

Publication date: 10 August 2013

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more