Skip to main content

Investigation of the Interlayer Organization of Water and Ions In Smectite from the Combined Use of Diffraction Experiments And Molecular Simulations. a Review of Methodology, Applications, And Perspectives

Buy Article:

$20.00 plus tax (Refund Policy)

Investigation of the organization of interlayer water and cations in smectite is a permanent topic in clay science for environmental science, civil engineering, materials science, and industrial applications. Experimental X-ray (or neutron) diffraction methods and molecular simulations are key techniques to probe the organization of the smectite structure at a similar molecular length scale. The combination of both of these experimental and numerical methods represents a complementary approach to reveal the structural heterogeneity of real samples, design and model a wide range of smectite structures, and validate the simulation results through comparison with experimental data.

This paper first revisits establishment of the original interlayer model as developed in the 1930s for the organization of water and ions in the smectite structure using X-ray diffraction (XRD) techniques. Then, based on a simplified approach, key theoretical tools are provided to calculate XRD pattern 00l reflections for a periodic smectite structure with a wide range of interlayer compositions and organizations using conventional spreadsheet software. In addition to educational purposes, this theoretical description is used to describe the principal parameters governing the positions and intensities of experimental XRD 00l reflections. This calculation toolbox is also used to determine better the layer-to-layer distances considered in molecular simulations and to validate these simulations through a detailed collation procedure using experimental data.

Recent examples of the application of such a procedure to collate experimental diffraction data and molecular simulations are presented for the specific case of deciphering the molecular organization of interlayer water and cations in the different smectite hydrates (mono-, bi-, and tri-hydrated layers). The extension of this approach to the interlayer refinement of organo-clays is also detailed, and perspectives regarding the characterization of other lamellar compounds are discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: INTERLAYER ION ORGANIZATION; INTERLAYER WATER ORGANIZATION; MOLECULAR SIMULATION; NEUTRON DIFFRACTION; SMECTITES; X-RAY DIFFRACTION

Document Type: Research Article

Publication date: 01 August 2016

This article was made available online on 22 July 2016 as a Fast Track article with title: "PREPUBLICATION: Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives".

More about this publication?
  • The JOURNAL publishes articles of interest to the international community of clay scientists, including but not limited to areas in mineralogy, crystallography, geology, geochemistry, sedimentology, soil science, agronomy, physical chemistry, colloid chemistry, ceramics, petroleum engineering, foundry engineering, and soil mechanics. Clays and Clay Minerals exists to disseminate to its worldwide readership the most recent developments in all of these aspects of clay materials. Manuscripts are welcome from all countries.

    Clays and Clay Minerals is the official publication of The Clay Minerals Society.

    The Editor-in-Chief is Professor Joseph W. Stucki [email protected]

    Publications of The Clay Minerals Society
    Source Clays

  • Editorial Board
  • Information for Authors
  • Membership Information
  • Annual Meeting of The Clay Minerals Society
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
UA-1313315-24
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more