Skip to main content

Structure and Stability of an Azoreductase with an FAD Cofactor from the Strict Anaerobe Clostridium perfringens

Buy Article:

$68.00 + tax (Refund Policy)

Azoreductase enzymes present in many microorganisms exhibit the ability to reduce azo dyes, an abundant industrial pollutant, to produce carcinogenic metabolites that threaten human health. All biochemically-characterized azoreductases, around 30 to date, have been isolated from aerobic bacteria, except for AzoC, the azoreductase of Clostridium perfringens, which is from a strictly anaerobic bacterium. AzoC is a recently biochemically-characterized azoreductase. The lack of structural information on AzoC hinders the mechanistic understanding of this enzyme. In this paper, we report on the biophysical characterization of the structure and thermal stability of AzoC by using a wide range of biophysical tools: Liquid Chromatography-Mass Spectrometry (LC-MS), Circular Dichroism Spectroscopy, Fouriertransform Infrared (FTIR) Spectroscopy, SDS-PAGE, Size Exclusion Chromatography, MALDI-TOF and UV-visible spectroscopy. We found that the flavin cofactor of AzoC is FAD, while all other structurally-known azoreductases employ FMN as a cofactor. The secondary structure of AzoC has 16% less α-helix structures, 5% more β-sheet structures and 11% more turn and unordered than the average of structurally-known azoreductase that have 10-14% sequence similarities with AzoC. We also found that oxidized AzoC is trimeric, which is unique amongst structurally known azoreductases. In contrast, reduced AzoC is monomeric, despite similarities in catalytic activity and thermal stability of oxidized and reduced AzoC. Our results show that the use of FTIR spectroscopy is crucial for characterization of the β-sheet content in AzoC, illustrating the need for complementary biophysical tools for secondary structural characterization of proteins.

Keywords: Azoreductase; Circular Dichroism; Clostridium perfringens; FAD; FTIR spectroscopy; cofactor; secondary structure; thermal stability

Document Type: Research Article

Publication date: 01 June 2014

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content