Skip to main content

Mass Spectrometric Characterization of the Sarcoplasmic Reticulum from Rabbit Skeletal Muscle by On-membrane Digestion

Buy Article:

$68.00 + tax (Refund Policy)

The sarcoplasmic reticulum from skeletal muscle constitutes an elaborate membrane system that contains a considerable number of integral and very large proteins that exist in highly complex supramolecular clusters. Conventional proteomics using two-dimensional gel electrophoresis greatly underestimates the presence of these proteins. Here, we have applied one-dimensional gradient gels and on-membrane digestion to overcome this technical problem. Mass spectrometric analysis has determined the presence of 31 distinct protein species in the sarcoplasmic reticulum, including key Ca2+-handling proteins such as the ryanodine receptor, Ca2+-ATPase, calsequestrin and sarcalumenin. Immunoblotting confirmed the relative position of these Ca2+-regulatory elements in analytical gel replicas. Interestingly, aldolase and phosphofructokinase were found to be present in the purified sarcoplasmic reticulum, supporting the idea of a close physical coupling between the glycolytic pathway and the energy-dependent sarcoplasmic reticulum. Hence, on-membrane digestion is highly suitable as the method of choice for studying integral and high-molecular-mass proteins in proteomic studies.





Keywords: Calcium homeostasis; calsequestrin; gel electrophoresis; mass spectrometry; muscle proteomics; on-membrane digestion; ryanodine receptor; sarcalumenin; sarcoplasmic reticulum

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content