Skip to main content

Redox Mechanisms of Vascular Cell Dysfunction in Sepsis

Buy Article:

$68.00 + tax (Refund Policy)

Sepsis remains one of the leading causes of death in intensive care units, despite recent acquired knowledge on pathophysiology and treatment. Several mediators of inflammation and cellular damage have been implicated in the complex host-pathogen interaction underlying organ damage and multisystem organ failure , which are hallmarks of sepsis and common causes of death. Among such mediators, reactive oxygen/nitrogen species have been increasingly studied in the context of direct cytotoxicity as well as altered cell signaling. While the generation of reactive oxygen species by inflammatory cells in sepsis is well known, recent studies have shown that vascular cells are able to release reactive oxygen intermediates that may be associated with endothelial dysfunction of sepsis. These compounds can activate transcription factors such as NF-κB that sustain inflammatory process or enzymatic systems like poly(ADPribose) polymerase-1, which are involved in apoptosis and cytotoxicity of sepsis. Our laboratory recently showed that platelet-derived exosomes from septic patients carry components of a superoxide-producing NADPH oxidase and can, at least in vitro, induce apoptosis of endothelial and vascular smooth muscle cells by a ROS-dependent pathway. Taken together, these data show that reactive oxygen species are involved in cell signaling and organ injury in sepsis. Efforts must be made to identify the precise contribution of these factors in septic process, in order to clarify the mechanisms associated with the disease. This will certainly lead to discovery of therapeutic strategies that can help us to mitigate vascular dysfunction of sepsis.





Keywords: NADPH oxidase; PARP; Sepsis; exosomes; reactive oxygen species; superoxide; vascular dysfunction

Document Type: Research Article

Affiliations: Av. Dr. Enéas de Carvalho Aguiar 255, 5° andar sala 5023, São Paulo - SP - ZIP: 05403-900, Brazil.

Publication date: 01 June 2006

More about this publication?
  • This journal is devoted to timely reviews of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Topics related to the neuroendocrine-immune axis are given special emphasis in view of the growing interest in stress-related, inflammatory, autoimmune, and degenerative disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content