Skip to main content

Monocyte Dependent Regulation of Autoimmune Inflammation

Buy Article:

$68.00 + tax (Refund Policy)

In chronic inflammation, across a number of quite different pathological conditions, monocytes accumulate. In autoimmune disease, these cells are widely recognised to play an inflammatory and tissue destructive role. But these cells also inhibit T cell proliferation by a range of different mechanisms that are accompanied by the depletion of specific amino acids in the local microenvironment and the downregulation of the T cell receptor ζ chain. This occurs within the pro-inflammatory environment and in the presence of Th1 (IFNγ) and Th17 (IL-17) cytokines. In tumours, related cells are part of a population called myeloid-derived suppressor cells (MDSC) and they are associated with immunosuppression. Their depletion can lead to clinical improvement. In organ specific autoimmune disease, where such cells can be found in the spleen and in target organs, recent evidence indicates that they may play a role in limiting the T cell response to autoantigens in the target tissue. This occurs by a targeted disruption of T cell division. In this review we discuss evidence for the presence on MDSC in murine and human autoimmune disease and the mechanisms by which such cells inhibit T cell proliferation.





Keywords: EAE; EAU; MDSC; autoimmune disease; macrophage; monocyte

Document Type: Research Article

Publication date: 01 February 2009

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content