Skip to main content

Biochemical Basis of Ischemic Heart Injury and of Cardioprotective Interventions

Buy Article:

$68.00 + tax (Refund Policy)

Cardioprotective interventions are defined as interventions able to increase myocardial resistance to ischemia. The authors approach the issue of cardioprotection on the basis of the present knowledge about the biochemical mechanisms responsible for the injury produced by myocardial ischemia or ischemia-reperfusion. Reversible and irreversible injury are distinguished. The former is largely accounted for by the direct consequences of reduced ATP synthesis, which causes decreased ATP phosphorylation potential, acidosis and phosphate accumulation. The biochemical mechanisms leading to irreversible injury include osmotic overload, production of toxic lipid metabolites, cytosolic calcium overload, and generation of reactive oxygen species, which lead to membrane disruption, mitochondrial dysfunction and possibly to the activation of apoptotic pathways. The major effect of the classical cardioprotective agents (nitrates, beta adrenergic antagonists, calcium channel blockers) consists in affecting ATP demand/supply ratio in such a way as to delay the decrease in ATP phosphorylation potential. Other drugs have been introduced, which allegedly interfere directly with the mechanisms responsible for irreversible ischemic injury. These include 3-ketoacyl-CoA tiolase inhibitors, modulators of intracellular calcium channels, ionic exchanger inhibitors, free radical scavengers, caspase inhibitors, purinergic agonists, K+ ATP channel openers, and modulators of mitochondrial permeability transition. The results obtained with these substances in experimental models and in the clinical setting are discussed. Special attention is devoted to angiotensin converting enzyme inhibitors, whose direct cardioprotective properties has recently been demonstrated.





Keywords: Angiotensin converting enzyme inhibitors (ACEis); beta blockers; calcium antagonists; free radicals; ischemia; myocardial infarction; nitric oxide (NO); preconditioning; reperfusion

Document Type: Research Article

Affiliations: Preclinical Development Dept., Menarini Ricerche spa, Via Sette Santi 1, 50131 Firenze, Italy.

Publication date: 01 June 2007

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content