Skip to main content

Ultrahigh Throughput Screening System for Directed Glucose Oxidase Evolution in Yeast Cells

Buy Article:

$55.00 plus tax (Refund Policy)

A compartmentalized tyramide labeling system (CoaTi) employing flow cytometry for sorting of yeast cells was developed as ultrahigh throughput screening for Glucose oxidase (GOx) from Aspergillus niger. CoaTi combines in vitro compartmentalization technology with the CARD reporter system which uses fluorescein tyramide labels for detection of peroxidase activity. Physical connection between cells and fluorescein tyramide radicals was achieved by compartmentalization of yeast cells inside microdroplets of single water-in-oil emulsions. After reaction cells were recovered from single emulsions and sorted by flow cytometry, an error prone PCR mutant library of Glucose oxidase (GOx) containing 107 cells and ∼105 of different GOx variants was screened. Mutagenic conditions of GOx mutant library were selected to generate <1% of active GOx population in order to explore influence of high mutation frequency on GOx activity. GOx variant Mut12 that contains 5 mutations (N2Y, K13E, T30V, I94V, K152R) showed a 1.2 times decreased Km (22.0 vs 18.1 mM) and a 2.7 fold increased kcat (150 s-1 vs 54.8 s-1) compared to wt GOx. Compared to the employed parent B11 GOx (16 mM, 80 s-1) it has a slightly increased Km and 1.8 times increased kcat.





No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Applichem; Aspergillus niger; CoaTi Screening; CoaTi screening technology; Directed evolution; Escherichia coli; Flow Cytometry Screening; HRP; Horseradish; MICCRA D-1 dispenser; Mutant GOx; NanoDrop photometer; Pichia pastoris; SDS PAGE; Saccharomyces cerevisiae; Sigma-Aldrich Chemie; UV-VIS; emulsion; epPCR Library; ethanol fluorescein tyramide 2 mM; glucose oxidase; high throughput screening; spectroscopy

Document Type: Research Article

Publication date: 2011-01-01

More about this publication?
  • Combinatorial Chemistry & High Throughput Screening publishes full length original research articles and reviews describing various topics in combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) and/or high throughput screening (e.g. developmental, practical or theoretical). Ancillary subjects of key importance, such as robotics and informatics, will also be covered by the journal. In these respective subject areas, Combinatorial Chemistry & High Throughput Screening is intended to function as the most comprehensive and up-to-date medium available. The journal should be of value to individuals engaged in the process of drug discoveryand development, in the settings of industry, academia or government.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more