Skip to main content

Streamlined In Vivo Selection and Screening of Human Prostate Carcinoma Avid Phage Particles for Development of Peptide Based In Vivo Tumor Imaging Agents

Buy Article:

$68.00 + tax (Refund Policy)

Bacteriophage (phage) display has been exploited for the purpose of discovering new cancer specific targeting peptides. However, this approach has resulted in only a small number of tumor targeting peptides useful as in vivo imaging agents. We hypothesize that in vivo screening for tumor uptake of fluorescently tagged phage particles displaying multiple copies of an in vivo selected tumor targeting peptide will expedite the development of peptide based imaging agents. In this study, both in vivo selection and in vivo screening of phage displaying foreign peptides were utilized to best predict peptides with the pharmacokinetic properties necessary for translation into efficacious in vivo imaging agents. An in vivo selection of phage display libraries was performed in SCID mice bearing human PC-3 prostate carcinoma tumors. Eight randomly selected phage clones and four control phage clones were fluorescently labeled with AlexaFluor 680 for subsequent in vivo screening and analyses. The corresponding peptides of six of these phage clones were tested as 111Inlabeled peptide conjugates for single photon emission computed tomography (SPECT) imaging of PC-3 prostate carcinomas. Two peptide sequences, G1 and H5, were successful as in vivo imaging agents. The affinities of G1 and H5 peptides for cultured PC-3 cells were then analyzed via cell flow cytometry resulting in Kd values of 1.8 μM and 2.2 μM, respectively. The peptides bound preferentially to prostate tumor cell lines compared to that of other carcinoma and normal cell lines, and H5 appeared to possess cytotoxic properties. This study demonstrates the value of in vivo screening of fluorescently labeled phage for the prediction of the efficacy of the corresponding 111In-labeled synthetic peptide as an in vivo SPECT tumor imaging agent.





Keywords: AlexaFluor 680; CTI Concord Microsystems microSPECT; DMEM; DOTA; ELISA; Enzyme-Linked Immunosorbent; Escherichia coli; FACScan analysis; FITC; Fluorescent optical imaging; HEK 293; IVIS200 imaging system; In-DOTA-G1; In-DOTA-H5; KCCYSL; MCF-7; Nikon Eclipse TS100-F microscope; PC-3 prostate carcinoma; PSMA; RP-HPLC; SCID; SPECT; fUSE5; fluorescein; in vivo screening; micropanning assay a; phage display; reverse-phase high pressure liquid chromatography; single photon emission computed tomography; staurosporine; tumor-targeting peptides

Document Type: Research Article

Publication date: 01 January 2011

More about this publication?
  • Combinatorial Chemistry & High Throughput Screening publishes full length original research articles and reviews describing various topics in combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) and/or high throughput screening (e.g. developmental, practical or theoretical). Ancillary subjects of key importance, such as robotics and informatics, will also be covered by the journal. In these respective subject areas, Combinatorial Chemistry & High Throughput Screening is intended to function as the most comprehensive and up-to-date medium available. The journal should be of value to individuals engaged in the process of drug discoveryand development, in the settings of industry, academia or government.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content