Skip to main content

Correlations Between Experimentally-Determined Melting Temperatures and GC-Content for Short DNA Strands

Buy Article:

$68.00 + tax (Refund Policy)

Background: The hybridization stability of single and double stranded DNA sequences has been studied extensively and its impact on bio-computing, bio-sensing and bio-quantification technologies such as microarrays, Real-time PCR and DNA sequencing is significant. In many bioinformatics applications DNA duplex hybridization is traditionally estimated using GC-content and melting temperature calculations based on the sequence base composition.

Objective: In this study we explore the equivalence of the two approaches when estimating DNA sequence hybridization and we show that GC-content is a far from perfect predictor of DNA strand hybridization strength compared to experimentally-determined melting temperatures.

Method: To test the assumption that DNA GC-content is a good indicator of its melting temperature, we formulate a research hypothesis and we apply the Pearson product-moment correlation statistical model to measure the strength of a linear association between the GC-content and melting temperatures.

Results: We built a manually curated set of 373 experimental data points collected from 21 publications, each point representing a DNA strand with length between 4 and 35 nucleotides and its corresponding experimentally determined melting temperature measured under specific sequence and salt concentrations. For each data point we calculated the corresponding GC-content and we separated the set into 12 subsets to minimize the variability of experimental conditions.

Conclusion: Based on calculated Pearson product-moment correlation coefficients we conclude that GC-content only seldom correlates well with experimentally determined melting temperatures and thus it is not a strictly necessary constraint when used to control the uniformity of DNA strands.

Keywords: DNA sequence; GC-content; Pearson correlation; hybridization; melting temperature; oligonucleotides

Document Type: Research Article

Publication date: 01 August 2017

More about this publication?
  • Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a wide range of the integration of biology with computer and information science.

    The journal focuses on reviews on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.

    Current Bioinformatics is an essential journal for all academic and industrial researchers who want expert knowledge on all major advances in bioinformatics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content