Skip to main content

Quantitative Structure-Activity Relationships (QSAR) with the MolNet Molecular Graph Machine

Buy Article:

$68.00 + tax (Refund Policy)

Quantitative structure-activity relationships (QSAR) are statistical models that may predict various physicochemical and biological properties of chemical compounds. Typical QSAR models use as input molecular descriptors computed from the chemical structure of the compounds in the dataset. QSAR models are based on algorithms or mathematical functions that correlate these molecular descriptors with the experimental property that is modeled. A different approach is explored in molecular graph machines (MGM) which represent a class of QSAR models that actively consider the molecular topology in the process of generating a structure-property model. After a review of the major MGM models, we present a detailed overview of the artificial neural network MolNet, which is a multilayer perceptron that encodes the molecular topology of each chemical presented to the network during learning or prediction. Each nonhydrogen atom in a molecule has a corresponding neuron in the input and hidden layers, whereas the output layer has only one neuron which provides the computed molecular property. The connections between the input and hidden layers encode the topological distance matrix of a molecule, whereas the connections between the hidden and output layers are classified according to atom types. Connection weights corresponding to the same topological distance or to the same atom type have a constant value for all chemicals in the training set. A MolNet application is presented for the glycogen synthase kinase-3β (GSK-3β) inhibition by aloisines.





Keywords: Artificial neural networks; GSK-3β; HOMO and LUMO energies; MGM; MolNet Input Indices; QSAR; Quantitative structure-activity relationships; artificial neural network; glycogen synthase kinase 3β; graph mining; molecular graph machines; topological indices

Document Type: Research Article

Publication date: 01 June 2011

More about this publication?
  • Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a wide range of the integration of biology with computer and information science.

    The journal focuses on reviews on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.

    Current Bioinformatics is an essential journal for all academic and industrial researchers who want expert knowledge on all major advances in bioinformatics.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content