Skip to main content

Impedance Characteristics of Gold-Extended-Gate Electrodes for Biosensor Applications

Buy Article:

$107.14 + tax (Refund Policy)

Electrochemical impedance spectroscopy technique has been used to study a variety of electrochemical phenomena on an electrode–electrolyte interface. The electrical characteristics of the electrode–electrolyte interface can be investigated using electrochemical impedance spectroscopy techniques for considering an extended-gate electrode of a field-effect transistor with an extended-gate electrode. In this paper, we present impedance characteristics between a reference electrode and gold electrodes with several dimensions fabricated on a glass wafer using electrochemical impedance spectroscopy technique. For this study, we have fabricated the circular gold-extended-gate electrodes with diameters of 0.1 mm, 0.2 mm, 0.5 mm, 1.0 mm and 2.0 mm. Then, the impedance which is changed by reaction of streptavidin onto biotin molecules was measured and compared for the different diameters. We have investigated that the variation of electron transfer resistance was greater than the interfacial capacitance in all cases, by immobilization of biotin or by reaction of streptavidin. We have also verified that the electrode with 0.2 mm in diameter showed the largest variation in electron transfer resistance and explained the reason. Additionally, we have considered about the field-effect transistor-based biosensor with extended-gate electrode in this study.

Keywords: ELECTRON TRANSFER; EXTENDED-GATE ELECTRODE; FIELD-EFFECT TRANSISTOR; IMPEDANCE BIOSENSOR

Document Type: Research Article

Publication date: 01 February 2011

More about this publication?
  • The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content