Skip to main content

Electrical and Mechanical Characteristics of Room Temperature Deposited Silicon Nitride Using Two Inner Parallel Cylindrical Coils Inductively Coupled Plasma Chemical Vapor Deposition

Buy Article:

$107.14 + tax (Refund Policy)

For investigating silicon nitride (SiN) thin film deposition process at room temperature without additional substrate heating, we studied inductively coupled plasma chemical vapor deposition with two inner parallel cylindrical coils which can activate the more radicals and charged species in the plasma. We investigated the influence of plasma RF power on the characteristics of room temperature deposited SiN films. Deposition rates, dielectric constant, refractive index, and stress of the films ranged from 4.5 nm/min to 8.3 nm/min, 8.4 to 10, 1.8 to 2.1, and 0.54 to 0.15, respectively. According to the FTIR measurements, the concentration of the Si—H and N—H bonds was decreased as the RF power increased, and the Si—H bonds tended to disappear at RF power over 500 W. This reduction in the hydrogen content was accompanied by the increases in the deposition rate and refractive index. It was confirmed that the breakdown field could be also maximized to 10 MV/cm.

Document Type: Research Article

Publication date: 01 September 2013

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content